Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter J. Steel ${ }^{2 *}$ and
Muna R. A. Al-Mandhary ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Canterbury, Christchurch, New Zealand, and
${ }^{\text {b }}$ College of Science, Sultan Qaboos University, Al-Khod 123, Sultanate of Oman

Correspondence e-mail:
peter.steel@canterbury.ac.nz

Key indicators

Single-crystal X-ray study
$T=168 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.107$
Data-to-parameter ratio $=11.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,4-Bis(8-quinolyloxymethyl)benzene

The two quinoline ring systems of the title compound, $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$, are differently inclined to the plane of the central benzene ring. The intermolecular packing involves $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ and $\pi-\pi$ stacking interactions.

Comment

We have recently embarked on a study of a diverse series of bridging heterocyclic ligands that comprise 8-quinolyloxy units separated by various spacer groups (Al-Mandhary \& Steel, 2002). As part of this work, we prepared all three isomers of the ligands with xylylene spacers and showed that both the ortho- and meta-isomers readily formed transition metal complexes with interesting molecular structures (AlMandhary \& Steel, 2004a). In contrast, the para-isomer, 1,4-bis(8-quinolyloxymethyl)benzene, (I), proved singularly resistant to the formation and isolation of any metal complexes. This raised some doubt as to the integrity of the ligand itself and, thus, a single crystal X-ray structure determination of (I) was carried out, the results of which are reported here.

(I)

The structure crystallizes in the monoclinic space group $P 2_{1} / n$ with a full molecule in the asymmetric unit. The potential for higher crystallographic symmetry is precluded by the very different orientations of the two quinolyloxymethyl substituents; the mean planes of the two quinoline ring systems are inclined to the plane of the central aromatic ring at angles of 47.3 (2) and 73.2 (2) ${ }^{\circ}$, respectively. Also, the O atoms are differently displaced from the plane of the central ring, as reflected in the torsion angles $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{O} 1=143.5$ (2) and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 21-\mathrm{O} 2=109.0(2)^{\circ}$. Similar variations were observed in the structure of a durene-derived tetrasubstituted analogue (Al-Mandhary \& Steel, 2004b). The reason for these differences most probably (Desiraju, 2002, and references therein) lies in the crystal-packing interactions, which contain weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ (Amoore et al., 2003, and reference therein) and $\pi-\pi$ stacking interactions (Hunter et al., 2001; Jennings et al., 2001; Meyer et al., 2003). Specifically, adjacent molecules are weakly linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions between the quinoline ring systems, as defined by the following intermolecular contacts: $\mathrm{N} 11 \cdots \mathrm{H} 24=2.42 \AA$ and $\mathrm{N} 21 \cdots \mathrm{H} 14=$ $2.59 \AA$. The strongest $\pi-\pi$ interactions are between the central aromatic rings of adjacent molecules, whose mean planes and

Received 2 February 2004 Accepted 5 February 2004 Online 14 February 2004

Figure 1
Perspective view of (I). Displacement ellipsoids are drawn at the 50\% probability level and H atoms are drawn as small circles of arbitrary radii.
centroids are separated by approximately 3.49 and 3.79 A , respectively.

Experimental

The title compound was prepared from 1,4-bis(bromomethyl)benzene and 8 -hydroxyquinoline by a literature procedure (Tummler et al., 1979). Crystals suitable for X-ray analysis were formed by slow evaporation of a solution of the ligand in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \\
& M_{r}=392.44 \\
& \text { Monoclinic, } P 2_{\mathrm{h}} / n \\
& a=11.969(3) \AA \\
& b=14.326(3) \AA \\
& c=12.622(3) \AA \\
& \beta=113.604(3))^{\circ} \\
& V=1983.1(8) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.314 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5016 \\
& \quad \text { reflections } \\
& \theta=2.3-26.2^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=168(2) \mathrm{K} \\
& \text { Block, white } \\
& 0.54 \times 0.40 \times 0.35 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector	3060 independent reflections
\quad diffractometer	2403 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.043$
Absorption correction: multi-scan	$\theta_{\max }=24.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 2002 $)$	$h=-13 \rightarrow 13$
$T_{\min }=0.751, T_{\max }=0.971$	$k=-16 \rightarrow 16$
10845 measured reflections	$l=-14 \rightarrow 7$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0595 P)^{2} \\
&+0.382 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.59 \mathrm{e}^{2} \AA_{\circ}^{-3}
\end{aligned}
$$

$S=1.03$
3060 reflections
271 parameters
H atoms treated by a mixture of independent and constrained refinement

H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$) and refined as riding, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent atom.

Data collection: $S M A R T$ (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the Royal Society of New Zealand Marsden Fund for financial support, and Drs Lyall Hanton and Juliet Gerrard for useful discussions, mingled with expert advice.

References

Al-Mandhary, M. R. A. \& Steel, P. J. (2002). Aust. J. Chem. 55, 705-708.
Al-Mandhary, M. R. A. \& Steel, P. J. (2004a). Eur. J. Inorg. Chem. pp. 329-334. Al-Mandhary, M. R. A. \& Steel, P. J. (2004b). Polyhedron. Submitted.
Amoore, J. J. M., Hanton, L. R. \& Spicer, M. D. (2003). Dalton Trans. pp. 1056-1058.
Bruker (1997). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
Hunter, C. A., Lawson, K. R., Perkins, J. \& Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.
Jennings, W. B., Farrell, B. M. \& Malone, J. F. (2001). Acc. Chem. Res. 34, 885894.

Meyer, E. A., Castellano, R. K. \& Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Tummler, B., Maass, G., Vogtle, F., Sieger, H., Heimann, U. \& Weber, E. (1979).
J. Am. Chem. Soc. 101, 2588-2598.

